Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(2): e4876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108201

RESUMEN

Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPß1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.


Asunto(s)
Antígenos de Neoplasias , Señales de Localización Nuclear , alfa Carioferinas , Humanos , Transporte Activo de Núcleo Celular/fisiología , alfa Carioferinas/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Antígenos de Neoplasias/metabolismo , Núcleo Celular/metabolismo , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo
2.
J Phys Chem B ; 127(14): 3175-3186, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001021

RESUMEN

Although Venezuelan equine encephalitis virus (VEEV) is a life-threatening pathogen with a capacity for epidemic outbreaks, there are no FDA-approved VEEV antivirals for humans. VEEV cytotoxicity is partially attributed to the formation of a tetrameric complex between the VEEV capsid protein, the nuclear import proteins importin-α and importin-ß, and the nuclear export protein CRM1, which together block trafficking through the nuclear pore complex. Experimental studies have identified small molecules from the CL6662 scaffold as potential inhibitors of the viral nuclear localization signal (NLS) sequence binding to importin-α. However, little is known about the molecular mechanism of CL6662 inhibition. To address this issue, we employed all-atom replica exchange molecular dynamics simulations to probe, in atomistic detail, the binding mechanism of CL6662 ligands to importin-α. Three ligands, including G281-1485 and two congeners with varying hydrophobicities, were considered. We investigated the distribution of ligand binding poses, their locations, and ligand specificities measured by the strength of binding interactions. We found that G281-1485 binds nonspecifically without forming well-defined binding poses throughout the NLS binding site. Binding of the less hydrophobic congener becomes strongly on-target with respect to the NLS binding site but remains nonspecific. However, a more hydrophobic congener is a strongly specific binder and the only ligand out of three to form a well-defined binding pose, while partially overlapping with the NLS binding site. On the basis of free energy estimates, we argue that all three ligands weakly compete with the viral NLS sequence for binding to importin-α in an apparent compromise to preserve host NLS binding. We further show that all-atom replica exchange binding simulations are a viable tool for studying ligands binding nonspecifically without forming well-defined binding poses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , alfa Carioferinas , Animales , Caballos , Humanos , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Virus de la Encefalitis Equina Venezolana/metabolismo , Simulación de Dinámica Molecular , Ligandos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Núcleo Celular/metabolismo , Sitios de Unión , Unión Proteica
3.
Biochemistry ; 62(5): 971-975, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36744831

RESUMEN

Nuclear transport of epidermal growth factor receptor (EGFR) is considered to be a key cause of radiation resistance in cancer therapy. Here, we showed that irradiation-activated EGFR binds to the nuclear transport protein karyopherin alpha (KPNA) rather than karyopherin subunit beta 1 (KPNB1), through a single-molecule pull-down assay, which allows measurement of the binding affinity by single proteins in cell lysate without an additional purification step. We also obtained kinetic parameters for the binding between the phosphorylated nuclear localization signal (NLS) peptide of EGFR (645RRRHIVRKRpTLRR657) and KPNA. This observation may help developing small molecules to modulate nuclear transport, which potentially reduces the radiation resistance during irradiation therapy.


Asunto(s)
Núcleo Celular , Señales de Localización Nuclear , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Receptores ErbB/metabolismo
4.
J Biomol Struct Dyn ; 41(10): 4641-4649, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35510584

RESUMEN

TULP3 is involved in cell regulation pathways including transcription and signal transduction. In some pathological states like in cancers, increased level of TULP3 has been observed so it can serve as a potential target to hamper the activation of those pathways. We propose a novel idea of inhibiting nuclear localization signal (NLS) to interrupt nuclear translocation of TULP3 so that the downstream activations of pathways are blocked. In current in silico study, 3D structure of TULP3 was modeled using 8 different tools including I-TASSER, CABS-FOLD, Phyre2, PSIPRED, RaptorX, Robetta, Rosetta and Prime by Schrödinger. Best structure was selected after quality evaluation by SAVES and implied for the investigation of NLS sequence. Mapped NLS sequence was further used to dock with natural ligand importin-α as control docking to validate the NLS sequence as binding site. After docking and molecular dynamics (MD) simulation validation, these residues were used as binding side for subsequent docking studies. 70 alkaloids were selected after intensive literature survey and were virtually docked with NLS sequence where natural ligand importin-α is supposed to be bound. This study demonstrates the virtual inhibition of NLS sequence so that it paves a way for future in-vivo studies to use NLS as a new drug target for cancer therapeutics.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Señales de Localización Nuclear , alfa Carioferinas , Señales de Localización Nuclear/química , alfa Carioferinas/química , Ligandos , Unión Proteica , Núcleo Celular/metabolismo , Transporte Activo de Núcleo Celular
5.
J Mol Recognit ; 36(2): e2996, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36175369

RESUMEN

Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB). The essential nature of the basic residues in the CLIC4 NLS has been established by the fact that mutating out these residues inhibits nuclear import, which in turn is linked to cutaneous squamous cell cancer. Given the conservation of the CLIC NLS, CLIC1 likely follows a similar import pathway to CLIC4. Peptides of the CLIC1 (Pep1; Pep1_S C/S mutant) and CLIC4 (Pep4) NLSs were designed to examine binding to human Impα isoform 1, omitting the IBB domain (hImpα1ΔIBB). Molecular docking indicated that the core CLIC NLS region (KKYR) forms a similar binding pattern to both mImpα1ΔIBB and hImpα1ΔIBB. Fluorescence quenching demonstrated that Pep1_S (Kd ≈ 237 µM) and Pep4 (Kd ≈ 317 µM) bind hImpα1ΔIBB weakly. Isothermal titration calorimetry confirmed the weak binding interaction between Pep4 and hImpα1ΔIBB (Kd ≈ 130 µM) and the presence of a proton-linked effect. This weak interaction may be due to regions distal from the CLIC NLS needed to stabilise and strengthen hImpα1ΔIBB binding. Additionally, this NLS may preferentially bind another hImpα isoform with different flexibility properties.


Asunto(s)
Cloruros , alfa Carioferinas , Animales , Ratones , Humanos , Transporte Activo de Núcleo Celular , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Cloruros/metabolismo , Secuencia de Aminoácidos , Simulación del Acoplamiento Molecular , Núcleo Celular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo
6.
Biomacromolecules ; 23(11): 4504-4518, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36200481

RESUMEN

Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.


Asunto(s)
Núcleo Celular , alfa Carioferinas , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Ligandos , Unión Proteica , Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas/metabolismo , Péptido Hidrolasas/metabolismo
7.
ChemMedChem ; 17(1): e202100640, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34623765

RESUMEN

Taspase1 is a unique protease not only pivotal for embryonic development but also implicated in leukemia as well as solid tumors. As such, it is a promising target in cancer therapy, although only a limited number of Taspase1 inhibitors lacking general applicability are currently available. Here we present a bivalent guanidiniocarbonyl-pyrrole (GCP)-containing supramolecular ligand that is capable of disrupting the essential interaction between Taspase1 and its cognate import receptor Importin α in a concentration-dependent manner in vitro with an IC50 of 35 µM. Here, size of the bivalent vs the monovalent construct as well as its derivation with an aromatic cbz-group arose as critical determinants for efficient interference of 2GC. This was also evident when we investigated the effects in different tumor cell lines, resulting in comparable EC50 values (∼40-70 µM). Of note, in higher concentrations, 2GC also interfered with Taspase1's proteolytic activity. We thus believe to set the stage for a novel class of Taspase1 inhibitors targeting a pivotal protein-protein interaction prerequisite for its cancer-associated proteolytic function.


Asunto(s)
Endopeptidasas/metabolismo , Guanidina/farmacología , Inhibidores de Proteasas/farmacología , Pirroles/farmacología , alfa Carioferinas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Endopeptidasas/química , Guanidina/química , Humanos , Ligandos , Estructura Molecular , Inhibidores de Proteasas/química , Pirroles/química , Relación Estructura-Actividad , alfa Carioferinas/química , alfa Carioferinas/metabolismo
8.
FEBS Lett ; 595(22): 2793-2804, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34661283

RESUMEN

Adeno-associated viruses (AAVs) are key vectors for gene therapy; thus, many aspects of their cell transduction pathway have been revealed in detail. However, the specific mechanisms AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the structural interactions between the AAV capsid (Cap) protein and the nuclear transport protein importin alpha (IMPα). A putative nuclear localization sequence (NLS) in the virion protein 1 capsid protein of the porcine AAV Po1 was identified. This region was complexed with IMPα and a structure solved at 2.26 Å. This is the first time that an NLS of AAV Cap complexed with IMPα has been determined structurally. Our results support the findings that AAV capsids enter the nucleus through binding the nuclear import adapter IMPα.


Asunto(s)
Proteínas de la Cápside/química , alfa Carioferinas/química , Animales , Sitios de Unión , Proteínas de la Cápside/metabolismo , Dependovirus/química , Ratones , Simulación del Acoplamiento Molecular , Señales de Localización Nuclear , Unión Proteica , alfa Carioferinas/metabolismo
9.
Biophys Chem ; 278: 106677, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34428682

RESUMEN

The SARS-CoV-2 pandemic has accelerated the study of existing drugs. The mixture of homologs called ivermectin (avermectin-B1a [HB1a] + avermectin-B1b [HB1b]) has shown antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the behavior of each homolog. We investigated the interaction of each homolog with promising targets of interest associated with SARS-CoV-2 infection from a biophysical and computational-chemistry perspective using docking and molecular dynamics. We observed a differential behavior for each homolog, with an affinity of HB1b for viral structures, and of HB1a for host structures considered. The induced disturbances were differential and influenced by the hydrophobicity of each homolog and of the binding pockets. We present the first comparative analysis of the potential theoretical inhibitory effect of both avermectins on biomolecules associated with COVID-19, and suggest that ivermectin through its homologs, has a multiobjective behavior.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , ADN Helicasas/antagonistas & inhibidores , Ivermectina/análogos & derivados , alfa Carioferinas/antagonistas & inhibidores , beta Carioferinas/antagonistas & inhibidores , Animales , Antivirales/farmacología , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Humanos , Ivermectina/química , Ivermectina/farmacología , Cinética , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Termodinámica , alfa Carioferinas/química , alfa Carioferinas/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Tratamiento Farmacológico de COVID-19
10.
Biochem J ; 478(13): 2715-2732, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34195786

RESUMEN

The classical nuclear import pathway is mediated by importin (Impα and Impß), which recognizes the cargo protein by its nuclear localization sequence (NLS). NLSs have been extensively studied resulting in different proposed consensus; however, recent studies showed that exceptions may occur. This mechanism may be also dependent on specific characteristics of different Impα. Aiming to better understand the importance of specific residues from consensus and adjacent regions of NLSs, we studied different mutations of a high-affinity NLS complexed to Impα by crystallography and calorimetry. We showed that although the consensus sequence allows Lys or Arg residues at the second residue of a monopartite sequence, the presence of Arg is very important to its binding in major and minor sites of Impα. Mutations in the N or C-terminus (position P1 or P6) of the NLS drastically reduces their affinity to the receptor, which is corroborated by the loss of hydrogen bonds and hydrophobic interactions. Surprisingly, a mutation in the far N-terminus of the NLS led to an increase in the affinity for both binding sites, corroborated by the structure with an additional hydrogen bond. The binding of NLSs to the human variant Impα1 revealed that these are similar to those found in structures presented here. For human variant Impα3, the bindings are only relevant for the major site. This study increases understanding of specific issues sparsely addressed in previous studies that are important to the task of predicting NLSs, which will be relevant in the eventual design of synthetic NLSs.


Asunto(s)
Calorimetría/métodos , Simulación del Acoplamiento Molecular , Señales de Localización Nuclear/genética , alfa Carioferinas/genética , Transporte Activo de Núcleo Celular/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Unión Competitiva , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Ratones , Mutación , Unión Proteica , Dominios Proteicos , Electricidad Estática , alfa Carioferinas/química , alfa Carioferinas/metabolismo
11.
Infect Genet Evol ; 88: 104699, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33385575

RESUMEN

Plasmodium falciparum, the prime causative agent of malaria, is responsible for 4, 05,000 deaths per year and fatality rates are higher among the children aged below 5 years. The emerging distribution of the multi-drug resistant P. falciparum becomes a worldwide concern, so the identification of unique targets and novel inhibitors is a prime need now. In the present study, we have employed pharmacoinformatics approaches to analyze 265 lead-like compounds from PubChem databases for virtual screening. Thereafter, 15 lead-like compounds were docked within the active side pocket of importin alpha. Comparative ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were also assessed. Finally, a novel inhibitor was designed and assessed computationally for its efficacy. From the comparative analysis we have found that our screened compounds possess better results than the existing lead ivermectin; having the highest binding energy of -15.6 kcal/mol, whereas ivermectin has -12.4 kcal/mol. The novel lead compound possessed more fascinating output without deviating any of the rules of Lipinski. It also possessed higher bioavailability and the drug-likeness score of 0.55 and 0.71, respectively compared to ivermectin. Furthermore, the binding study was confirmed by molecular dynamics simulation over 25 ns by evaluating the stability of the complex. Finally, all the screened compounds and the novel compound showed promising ADMET properties likewise. To end, we hope that our proposed screened compounds, as well as the novel compound, might give some advances to treat malaria efficiently in vitro and in vivo.


Asunto(s)
Transporte Activo de Núcleo Celular/efectos de los fármacos , Antimaláricos/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/química , Plasmodium falciparum/efectos de los fármacos , alfa Carioferinas/química , beta Carioferinas/química , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos , Humanos , Ligandos , Malaria Falciparum/parasitología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
12.
Biomolecules ; 10(9)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933064

RESUMEN

Several carrier proteins are involved in protein transport from the cytoplasm to the nucleus in eukaryotic cells. One of those is importin α, of which there are several human isoforms; among them, importin α3 (Impα3) has a high flexibility. The protein NUPR1, a nuclear protein involved in the cell-stress response and cell cycle regulation, is an intrinsically disordered protein (IDP) that has a nuclear localization sequence (NLS) to allow for nuclear translocation. NUPR1 does localize through the whole cell. In this work, we studied the affinity of the isolated wild-type NLS region (residues 54-74) of NUPR1 towards Impα3 and several mutants of the NLS region by using several biophysical techniques and molecular docking approaches. The NLS region of NUPR1 interacted with Impα3, opening the way to model the nuclear translocation of disordered proteins. All the isolated NLS peptides were disordered. They bound to Impα3 with low micromolar affinity (1.7-27 µM). Binding was hampered by removal of either Lys65 or Lys69 residues, indicating that positive charges were important; furthermore, binding decreased when Thr68 was phosphorylated. The peptide phosphorylated at Thr68, as well as four phospho-mimetic peptides (all containing the Thr68Glu mutation), showed the presence of a sequential NN(i,i + 1) nuclear Overhauser effect (NOE) in the 2D-1H-NMR (two-dimensional-proton NMR) spectra, indicating the presence of turn-like conformations. Thus, the phosphorylation of Thr68 modulates the binding of NUPR1 to Impα3 by a conformational, entropy-driven switch from a random-coil conformation to a turn-like structure.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Neoplasias/química , Señales de Localización Nuclear/química , Procesamiento Proteico-Postraduccional , alfa Carioferinas/química , Transporte Activo de Núcleo Celular/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
13.
Autophagy ; 16(12): 2238-2251, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32924767

RESUMEN

KPNA2/importin-alpha1 (karyopherin subunit alpha 2) is the primary nucleocytoplasmic transporter for some transcription factors to activate cellular proliferation and differentiation. Aberrant increase of KPNA2 level is identified as a prognostic marker in a variety of cancers. Yet, the turnover mechanism of KPNA2 remains unknown. Here, we demonstrate that KPNA2 is degraded via the chaperone-mediated autophagy (CMA) and that Zika virus (ZIKV) enhances the KPNA2 degradation. KPNA2 contains a CMA motif, which possesses an indispensable residue Gln109 for the CMA-mediated degradation. RNAi-mediated knockdown of LAMP2A, a vital component of the CMA pathway, led to a higher level of KPNA2. Moreover, ZIKV reduced KPNA2 via the viral NS2A protein, which contains an essential residue Thr100 for inducing the CMA-mediated KPNA2 degradation. Notably, mutant ZIKV with T100A alteration in NS2A replicates much weaker than the wild-type virus. Also, knockdown of KPNA2 led to a higher ZIKV viral yield, which indicates that KPNA2 mediates certain antiviral effects. These data provide insights into the KPNA2 turnover and the ZIKV-cell interactions.


Asunto(s)
Autofagia Mediada por Chaperones , Proteolisis , Proteínas no Estructurales Virales/metabolismo , Virus Zika/metabolismo , alfa Carioferinas/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Chlorocebus aethiops , Glutamina/genética , Células HEK293 , Semivida , Humanos , Lisosomas/metabolismo , Mutación/genética , Relación Estructura-Actividad , Treonina/metabolismo , Células Vero , Proteínas no Estructurales Virales/química , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/virología , alfa Carioferinas/química
14.
Parasitol Res ; 119(11): 3899-3907, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32951146

RESUMEN

Importin α, a transport factor in the classical pathway of nuclear transport of proteins in eukaryotes, has not been experimentally studied in trypanosomatids. A chimeric fluorescent version of this protein (TcImportin α-EGFP) expressed in transfected epimastigotes of Trypanosoma cruzi is characterized here. Initially, the cellular localization of the tagged protein was analysed in exponentially growing and non-growing quiescent cells in a stationary phase. In growing epimastigotes, the fluorescence signal appeared to be mostly localized in the nucleolus, with additional minor fluorescent dots observed close to the nuclear periphery. In the stationary phase, both aged epimastigotes and metacyclic trypomastigotes presented with dispersed fluorescence of a granular form within the nucleoplasm of the cells that predominantly localized in poorly DAPI-stained regions. On the other hand, the ability of a tagged (6×His) version of TcImportin α to bind the nuclear protein cargo TcRPA31 (TcRPA31-EGFP) was determined by pull-down assays of co-transfected cultures. In addition, the results from the in vitro analyses with these tagged recombinant proteins showed that the functional nuclear localization signal (NLS) previously mapped to TcRPA31 was sufficient to sustain binding to TcImportin α. Moreover, the second cluster of basic amino acids within this bipartite NLS (formerly termed element B) was found to be essential for complex formation, as previously described for the nuclear translocation of these fluorescent chimeras. To our knowledge, this approach is the first in which Importin α was experimentally researched in kinetoplastids. The ability of TcImportin α to bind the NLS motif analysed here, is an essential feature expected for its potential functional role as a soluble transport factor.


Asunto(s)
Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Trypanosoma cruzi/metabolismo , alfa Carioferinas/metabolismo , Células Cultivadas , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas/fisiología , Proteínas Recombinantes/metabolismo , alfa Carioferinas/química
15.
Biochem J ; 477(17): 3253-3269, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32776146

RESUMEN

The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. In response to fluctuating blood glucose levels ChREBP activity is regulated mainly by nucleocytoplasmic shuttling of ChREBP. Under high glucose ChREBP binds to importin α and importin ß and translocates into the nucleus to initiate transcription. We have previously shown that the nuclear localization signal site (NLS) for ChREBP is bipartite with the NLS extending from Arg158 to Lys190. Here, we report the 2.5 Šcrystal structure of the ChREBP-NLS peptide bound to importin α. The structure revealed that the NLS binding is monopartite, with the amino acid residues K171RRI174 from the ChREBP-NLS interacting with ARM2-ARM5 on importin α. We discovered that importin α also binds to the primary binding site of the 14-3-3 proteins with high affinity, which suggests that both importin α and 14-3-3 are each competing with the other for this broad-binding region (residues 117-196) on ChREBP. We screened a small compound library and identified two novel compounds that inhibit the ChREBP-NLS/importin α interaction, nuclear localization, and transcription activities of ChREBP. These candidate molecules support developing inhibitors of ChREBP that may be useful in treatment of obesity and the associated diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Señales de Localización Nuclear/química , alfa Carioferinas/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cristalografía por Rayos X , Células Hep G2 , Humanos , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1864(7): 129609, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234409

RESUMEN

BACKGROUND: Eukaryotic cells have a continuous transit of macromolecules between the cytoplasm and the nucleus. Several carrier proteins are involved in this transport. One of them is importin α, which must form a complex with importin ß to accomplish its function, by domain-swapping its 60-residue-long N terminus. There are several human isoforms of importin α; among them, importin α3 has a particularly high flexibility. METHODS: We studied the conformational stability of intact importin α3 (Impα3) and its truncated form, where the 64-residue-long, N-terminal importin-ß-binding domain (IBB) has been removed (ΔImpα3), in a wide pH range, with several spectroscopic, biophysical, biochemical methods and with molecular dynamics (MD). RESULTS: Both species acquired native-like structure between pH 7 and 10.0, where Impα3 was a dimer (with an apparent self-association constant of ~10 µM) and ΔImpα3 had a higher tendency to self-associate than the intact species. The acquisition of secondary, tertiary and quaternary structure, and the burial of hydrophobic patches, occurred concomitantly. Both proteins unfolded irreversibly at physiological pH, by using either temperature or chemical denaturants, through several partially folded intermediates. The MD simulations support the presence of these intermediates. CONCLUSIONS: The thermal stability of Impα3 at physiological pH was very low, but was higher than that of ΔImpα3. Both proteins were stable in a narrow pH range, and they unfolded at physiological pH populating several intermediate species. GENERAL SIGNIFICANCE: The low conformational stability explains the flexibility of Impα3, which is needed to carry out its recognition of complex cargo sequences.


Asunto(s)
alfa Carioferinas/química , Humanos , Carioferinas/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
17.
Oncogene ; 39(10): 2212-2223, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31822798

RESUMEN

Nuclear import, mediated in part by karyopherin-α (KPNA)/importin-α subtypes, regulates transcription factor access to the genome and determines cell fate. However, the cancer-specific changes of KPNA subtypes and the relevancy in cancer biology remain largely unknown. Here, we report that KPNA4, encoding karyopherin-α4 (KPNA4), is exclusively amplified and overexpressed in head and neck of squamous cell carcinoma (HNSCC). Depletion of KPNA4 attenuated nuclear localization signal-dependent transport activity and suppressed malignant phenotypes and induced epidermal differentiation. Mechanistically, KPNA4-mediated nuclear transport of Ras-responsive element-binding protein (RREB1), which sustains Ras/ERK pathway signaling through repressing miR-143/145 expression. Notably, MAPK signaling enhanced trafficking activity of KPNA4 via phosphorylation of KPNA4 at Ser60. These data reveal that KPNA4 establishes a feed-forward cascade that potentiates Ras/ERK signaling in HNSCC.


Asunto(s)
Carcinogénesis , Proteínas de Unión al ADN/metabolismo , Amplificación de Genes , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Factores de Transcripción/metabolismo , alfa Carioferinas/genética , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/genética , Señales de Localización Nuclear , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Alineación de Secuencia , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , alfa Carioferinas/química , alfa Carioferinas/metabolismo
18.
BMC Dev Biol ; 19(1): 23, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31787077

RESUMEN

BACKGROUND: Epigenetic regulation of oocyte-specific maternal factors is essential for oocyte and early embryonic development. KPNA7 is an oocyte-specific maternal factor, which controls transportation of nuclear proteins important for early embryonic development. To elucidate the epigenetic mechanisms involved in the controlled expression of KPNA7, both DNA methylation associated transcriptional silencing and microRNA (miRNA)-mediated mRNA degradation of KPNA7 were examined. RESULTS: Comparison of DNA methylation profiles at the proximal promoter of KPNA7 gene between oocyte and 6 different somatic tissues identified 3 oocyte-specific differentially methylated CpG sites. Expression of KPNA7 mRNA was reintroduced in bovine kidney-derived CCL2 cells after treatment with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-Aza-CdR). Analysis of the promoter region of KPNA7 gene in CCL2 cells treated with 5-Aza-CdR showed a lighter methylation rate in all the CpG sites. Bioinformatic analysis predicted 4 miRNA-1296 binding sites in the coding region of KPNA7 mRNA. Ectopic co-expression of miRNA-1296 and KPNA7 in HEK293 cells led to reduced expression of KPNA7 protein. Quantitative real time PCR (RT-qPCR) analysis revealed that miRNA-1296 is expressed in oocytes and early stage embryos, and the expression reaches a peak level in 8-cell stage embryos, coincident with the time of embryonic genome activation and the start of declining of KPNA7 expression. CONCLUSIONS: These results suggest that DNA methylation may account for oocyte-specific expression of KPNA7, and miRNA-1296 targeting the coding region of KPNA7 is a potential mechanism for KPNA7 transcript degradation during the maternal-to-zygotic transition.


Asunto(s)
Metilación de ADN , MicroARNs/genética , Oocitos/crecimiento & desarrollo , alfa Carioferinas/genética , Animales , Sitios de Unión , Bovinos , Línea Celular , Desarrollo Embrionario , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Oocitos/química , Especificidad de Órganos , Regiones Promotoras Genéticas , Estabilidad del ARN , ARN Mensajero/química , alfa Carioferinas/química
19.
Biochem J ; 476(21): 3413-3434, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31642884

RESUMEN

The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-ß (Imp-ß) in the absence of NLS cargo. This result contrasts with Imp-ß interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-ß binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-ß to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-ß binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.


Asunto(s)
alfa Carioferinas/química , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Señales de Localización Nuclear , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , alfa Carioferinas/genética , beta Carioferinas/química , beta Carioferinas/genética
20.
Proteins ; 87(11): 904-916, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31152607

RESUMEN

Heterochromatin protein 1α (HP1α) is a protein that mediates cancer-associated processes in the cell nucleus. Proteomic experiments, reported here, demonstrate that HP1α complexes with importin α (IMPα), a protein necessary for its nuclear transport. This data is congruent with Simple Linear Motif (SLiM) analyses that identify an IMPα-binding motif within the linker that joins the two globular domains of this protein. Using molecular modeling and dynamics simulations, we develop a model of the IMPα-HP1α complex and investigate the impact of phosphorylation and genomic variants on their interaction. We demonstrate that phosphorylation of the HP1α linker likely regulates its association with IMPα, which has implications for HP1α access to the nucleus, where it functions. Cancer-associated genomic variants do not abolish the interaction of HP1α but instead lead to rearrangements where the variant proteins maintain interaction with IMPα, but with less specificity. Combined, this new mechanistic insight bears biochemical, cell biological, and biomedical relevance.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Mutación , Neoplasias/genética , Procesamiento Proteico-Postraduccional , alfa Carioferinas/genética , Secuencia de Aminoácidos , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Alineación de Secuencia , alfa Carioferinas/química , alfa Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...